Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[meso-Tetrakis(4-heptyloxyphenyl)porphyrinato]nickel(II)

Liang Chen,^a Hong-Bin Zhao,^{a,b}* Yu-Jia Xie,^a De-Liang Yang^a and Bang-Ying Wang^a

^aDepartment of Organic Chemistry, the College of Chemistry, Xiangtan University, Hunan 411105, People's Republic of China, and ^bEnvironmental Engineering, Dongguan University of Technology, Guangdong 523808, People's Republic of China

Correspondence e-mail: zhhbhanlf@163.com

Received 28 September 2010; accepted 16 October 2010

Key indicators: single-crystal X-ray study; T = 185 K; mean σ (C–C) = 0.004 Å; R factor = 0.051; wR factor = 0.114; data-to-parameter ratio = 14.8.

In the title compound, $[Ni(C_{72}H_{84}N_4O_4)]$, the four-coordinate Ni^{II} ion in the middle of the planar 24-membered porphyrin ring is located on a crystallograpic inversion center, with Ni-N distances of 1.946 (2)–1.951 (2) Å. The 4-heptyloxyphenyl groups are twisted with respect to the porphyrin mean plane, the dihedral angles being 88.5 (3) and 79.1 (2) $^{\circ}$.

Related literature

For related structures, see: Scheidt (1977); Maclean et al. (1996); Jentzen et al. (1996). For background to porphyrins and metalloporphyrins, see: Kozaki et al. (2007); Kuciauskas et al. (1996); Suslick et al. (2005); Liu et al. (1985); Gross & Ini (1999); Wasielewski et al. (1993).

Experimental

Crystal data

$[Ni(C_{72}H_{84}N_4O_4)]$	V = 3099.5 (4) Å ³
$M_r = 1128.14$	Z = 2
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 15.8843 (12) Å	$\mu = 0.37 \text{ mm}^{-1}$
b = 19.0602 (15) Å	T = 185 K
c = 10.2398 (8) Å	$0.21 \times 0.16 \times 0.07 \text{ mm}$
$\beta = 91.221 \ (2)^{\circ}$	

Data collection

Bruker APEX CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\min} = 0.927, T_{\max} = 0.975$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.114$ S = 0.965469 reflections

14663 measured reflections 5469 independent reflections 3578 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.062$

369 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.35$ e Å⁻³

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Changchun, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FK2026).

References

- Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gross, Z. & Ini, S. (1999). Org. Lett. 1, 2077-2080.
- Jentzen, W., Turowska-Tyrk, I., Scheidt, W. R. & Shelnutt, J. A. (1996). Inorg. Chem. 35, 3559-3567.
 - Kozaki, M., Akita, K. & Okada, K. (2007). Org. Lett. 9, 1509-1592.
 - Kuciauskas, D., Lin, S., Seely, G. R., Moore, A. L., Moore, M. T. & Gust, D. (1996). J. Phys. Chem. 100, 15926-15932.
 - Liu, H. Y., Abdalmuhdi, I., Chang, C. K. & Anson, F. C. (1985). J. Phys. Chem. 89, 665-670.
 - Maclean, A. L., Foran, G. J., Kennedy, B. J., Turner, P. & Hambley, T. W. (1996). Aust. J. Chem. 49, 1273-1278.
 - Scheidt, W. R. (1977). Acc. Chem. Res. 10, 339-345.
 - Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
 - Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
 - Suslick, K. S., Bhyrappa, P., Chou, J. H., Kosal, M. E., Nakagaki, S., Smithenry, D. W. & Wilson, S. R. (2005). Acc. Chem. Res. 38, 283-291.
 - Wasielewski, M. R., Gaines, G. L., Wiederrecht, G. P., Svec, W. A. & Niemczyk, M. P. (1993). J. Am. Chem. Soc. 115, 10442-10443.

Acta Cryst. (2010). E66, m1455 [doi:10.1107/81600536810041942]

[meso-Tetrakis(4-heptyloxyphenyl)porphyrinato]nickel(II)

L. Chen, H.-B. Zhao, Y.-J. Xie, D.-L. Yang and B.-Y. Wang

Comment

Porphyrins and metalloporphyrins are researched in many aspects, such as electron and energy transfer (Kozaki *et al.*,2007; Kuciauskas *et al.*,1996), molecular recognition (Suslick *et al.*,2005), catalysts (Liu *et al.*,1985; Gross & Ini, 1999) or biomimetic models of photosynthetic systems (Wasielewski *et al.*,1993). In this paper, the structure of Nickel(II) *meso*-tetrakis[*p*-(heptyloxy)phenyl] porphyrinate is reported.

The 24-membered porphyrin moiety of the title compound is planar with a mean deviation of 0.045 (3) Å. The fourcoordinate Ni^{II} ion is located at a crystallograpic inversion center, with Ni—N distances of 1.946 (2) to 1.951 (2) Å, in agreement with those found in other nickel porphyrin compounds (Scheidt,1977; Maclean *et al.*1996; Jentzen *et al.*1996.).

The *p*-pentyloxyphenyl groups are rotated at angles of 88.5 (3)° and 79.1 (2)° with respect to the porphyrin mean plane, due to steric hindrance with the pyrrole-H atoms of the macrocycle.

Experimental

Single crystals were recrystallised from a dichloromethane solution at room temperature.

Refinement

H atoms were placed in calculated positions (C—H = 0.95, 0.98 or 0.99 Å) and refined in riding mode, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl and 1.2 for all other H atoms.

Figures

Fig. 1. Molecular structure of (I), with the atom-labeling scheme and 50% probability displacement ellipsoids.

[meso-Tetrakis(4-heptyloxyphenyl)porphyrinato]nickel(II)

Crystal data

$[Ni(C_{72}H_{84}N_4O_4)]$
$M_r = 1128.14$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 15.8843 (12) Å
<i>b</i> = 19.0602 (15) Å
<i>c</i> = 10.2398 (8) Å
$\beta = 91.221 \ (2)^{\circ}$
$V = 3099.5 (4) \text{ Å}^3$
Z = 2

Data collection

Bruker APEX CCD area-detector diffractometer	5469 independent reflections
Radiation source: fine-focus sealed tube	3578 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.062$
phi and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2004)	$h = -18 \rightarrow 16$
$T_{\min} = 0.927, \ T_{\max} = 0.975$	$k = -22 \rightarrow 22$
14663 measured reflections	$l = -8 \rightarrow 12$

F(000) = 1208 $D_{\rm x} = 1.209 \text{ Mg m}^{-3}$

 $\theta = 2.3-22.6^{\circ}$ $\mu = 0.37 \text{ mm}^{-1}$ T = 185 KBlock, purple

 $0.21\times0.16\times0.07~mm$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 1476 reflections

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.114$	H-atom parameters constrained
<i>S</i> = 0.96	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0487P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
5469 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
369 parameters	$\Delta \rho_{max} = 0.36 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.35 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Ni1	1.0000	0.0000	0.0000	0.02268 (15)
N1	0.93762 (14)	0.08453 (11)	0.0426 (2)	0.0234 (5)
N2	0.90680 (13)	-0.05759 (11)	0.0596 (2)	0.0234 (5)
01	1.09497 (12)	0.46905 (9)	-0.07128 (19)	0.0323 (5)
O2	0.51784 (12)	0.09270 (11)	0.4285 (2)	0.0408 (6)
C1	1.03791 (18)	0.17651 (14)	-0.0219 (3)	0.0242 (7)
C2	0.96102 (17)	0.15389 (14)	0.0243 (3)	0.0244 (7)
C3	0.89751 (17)	0.20052 (15)	0.0693 (3)	0.0281 (7)
Н3	0.8985	0.2503	0.0646	0.034*
C4	0.83648 (18)	0.16108 (15)	0.1191 (3)	0.0301 (7)
H4	0.7866	0.1777	0.1583	0.036*
C5	0.86001 (17)	0.08937 (14)	0.1025 (3)	0.0244 (7)
C6	0.81084 (17)	0.03361 (15)	0.1406 (3)	0.0259 (7)
C7	0.83248 (17)	-0.03534 (15)	0.1162 (3)	0.0267 (7)
C8	0.78014 (18)	-0.09352 (15)	0.1457 (3)	0.0327 (8)
H8	0.7260	-0.0914	0.1832	0.039*
С9	0.82105 (17)	-0.15206 (16)	0.1109 (3)	0.0325 (8)
Н9	0.8013	-0.1989	0.1187	0.039*
C10	0.90037 (17)	-0.13037 (14)	0.0595 (3)	0.0243 (7)
C11	1.05300 (17)	0.25403 (14)	-0.0347 (3)	0.0252 (7)
C12	1.01380 (19)	0.29119 (15)	-0.1341 (3)	0.0330 (8)
H12	0.9778	0.2668	-0.1940	0.040*
C13	1.02490 (18)	0.36291 (15)	-0.1501 (3)	0.0333 (8)
H13	0.9960	0.3872	-0.2186	0.040*
C14	1.07832 (17)	0.39857 (14)	-0.0654 (3)	0.0276 (7)
C15	1.11814 (18)	0.36205 (15)	0.0355 (3)	0.0325 (7)
H15	1.1545	0.3863	0.0949	0.039*
C16	1.10554 (18)	0.29106 (15)	0.0505 (3)	0.0334 (8)
H16	1.1333	0.2670	0.1203	0.040*
C17	1.04975 (18)	0.50907 (14)	-0.1690 (3)	0.0321 (7)
H17A	0.9892	0.5107	-0.1485	0.039*
H17B	1.0557	0.4869	-0.2558	0.039*
C18	1.08534 (18)	0.58205 (14)	-0.1706 (3)	0.0326 (7)
H18A	1.0880	0.6005	-0.0802	0.039*
H18B	1.0472	0.6127	-0.2227	0.039*
C19	1.17292 (18)	0.58474 (14)	-0.2277 (3)	0.0339 (8)
H19A	1.2107	0.5542	-0.1746	0.041*
H19B	1.1700	0.5650	-0.3172	0.041*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C20	1.21164 (18)	0.65730 (15)	-0.2341 (3)	0.0360 (8)
H20A	1.2239	0.6742	-0.1442	0.043*
H20B	1.1706	0.6900	-0.2753	0.043*
C21	1.29262 (19)	0.65811 (16)	-0.3114 (3)	0.0384 (8)
H21A	1.3319	0.6231	-0.2729	0.046*
H21B	1.2792	0.6432	-0.4021	0.046*
C22	1.3369 (2)	0.72806 (17)	-0.3155 (4)	0.0528 (10)
H22A	1.3526	0.7424	-0.2253	0.063*
H22B	1.2975	0.7637	-0.3517	0.063*
C23	1.4159 (2)	0.7267 (2)	-0.3977 (4)	0.0689 (12)
H23A	1.4527	0.6883	-0.3680	0.103*
H23B	1.4458	0.7714	-0.3883	0.103*
H23C	1.3999	0.7194	-0.4897	0.103*
C24	0.73300 (17)	0.04826 (14)	0.2166 (3)	0.0266 (7)
C25	0.65543 (18)	0.06211 (16)	0.1569 (3)	0.0376 (8)
H25	0.6505	0.0617	0.0643	0.045*
C26	0.58512 (19)	0.07654 (17)	0.2299 (3)	0.0417 (8)
H26	0.5328	0.0862	0.1871	0.050*
C27	0.59084 (18)	0.07690 (15)	0.3649 (3)	0.0321 (8)
C28	0.66699 (18)	0.06206 (16)	0.4264 (3)	0.0380 (8)
H28	0.6715	0.0615	0.5191	0.046*
C29	0.73707 (19)	0.04797 (16)	0.3511 (3)	0.0363 (8)
H29	0.7893	0.0378	0.3940	0.044*
C30	0.5209 (2)	0.08959 (17)	0.5680 (3)	0.0431 (9)
H30A	0.5677	0.1190	0.6024	0.052*
H30B	0.5308	0.0407	0.5971	0.052*
C31	0.4376 (2)	0.11602 (17)	0.6195 (3)	0.0469 (9)
H31A	0.4344	0.1043	0.7134	0.056*
H31B	0.3910	0.0914	0.5731	0.056*
C32	0.42590 (19)	0.19494 (16)	0.6025 (3)	0.0435 (9)
H32A	0.4785	0.2189	0.6308	0.052*
H32B	0.4164	0.2052	0.5086	0.052*
C33	0.35324 (19)	0.22487 (16)	0.6787 (3)	0.0430 (9)
H33A	0.3588	0.2096	0.7709	0.052*
H33B	0.2997	0.2057	0.6425	0.052*
C34	0.3499 (2)	0.30462 (17)	0.6739 (4)	0.0500 (9)
H34A	0.4052	0.3234	0.7034	0.060*
H34B	0.3404	0.3195	0.5821	0.060*
C35	0.2822 (2)	0.33668 (17)	0.7564 (4)	0.0568 (11)
H35A	0.2896	0.3201	0.8476	0.068*
H35B	0.2264	0.3206	0.7237	0.068*
C36	0.2846 (3)	0.41618 (19)	0.7547 (5)	0.0884 (15)
H36A	0.3389	0.4324	0.7906	0.133*
H36B	0.2390	0.4346	0.8077	0.133*
H36C	0.2775	0.4329	0.6646	0.133*

Atomic dis	placement	parameters	$(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0215 (3)	0.0189 (3)	0.0279 (3)	-0.0005 (2)	0.0057 (2)	0.0001 (3)
N1	0.0224 (13)	0.0219 (13)	0.0262 (14)	0.0005 (11)	0.0043 (10)	-0.0013 (11)
N2	0.0220 (13)	0.0215 (13)	0.0269 (14)	0.0000 (10)	0.0044 (11)	-0.0015 (11)
01	0.0413 (13)	0.0198 (11)	0.0359 (13)	-0.0051 (9)	0.0003 (10)	0.0042 (9)
02	0.0328 (12)	0.0430 (14)	0.0473 (15)	0.0041 (10)	0.0168 (11)	-0.0031 (11)
C1	0.0256 (16)	0.0231 (16)	0.0238 (17)	0.0005 (13)	0.0022 (13)	0.0022 (13)
C2	0.0277 (16)	0.0217 (16)	0.0237 (17)	0.0032 (13)	0.0014 (13)	0.0000 (13)
C3	0.0311 (17)	0.0199 (16)	0.0336 (18)	0.0022 (13)	0.0032 (14)	-0.0009 (13)
C4	0.0271 (17)	0.0261 (17)	0.038 (2)	0.0063 (14)	0.0090 (15)	-0.0013 (14)
C5	0.0225 (16)	0.0208 (16)	0.0302 (17)	0.0005 (13)	0.0040 (13)	-0.0022 (13)
C6	0.0218 (16)	0.0264 (17)	0.0295 (18)	-0.0008 (13)	0.0045 (13)	-0.0022 (14)
C7	0.0230 (16)	0.0245 (17)	0.0330 (18)	-0.0021 (13)	0.0067 (14)	0.0008 (13)
C8	0.0240 (16)	0.0315 (18)	0.043 (2)	-0.0019 (14)	0.0118 (15)	0.0010 (15)
C9	0.0307 (18)	0.0250 (17)	0.042 (2)	-0.0039 (14)	0.0105 (15)	0.0005 (15)
C10	0.0264 (16)	0.0224 (16)	0.0243 (16)	-0.0012 (13)	0.0040 (13)	-0.0002 (13)
C11	0.0245 (15)	0.0206 (15)	0.0308 (17)	-0.0011 (13)	0.0060 (13)	-0.0015 (13)
C12	0.0396 (19)	0.0265 (17)	0.0330 (18)	-0.0060 (14)	0.0016 (15)	-0.0026 (14)
C13	0.0415 (19)	0.0260 (17)	0.0321 (18)	-0.0024 (15)	-0.0036 (15)	0.0037 (14)
C14	0.0297 (17)	0.0214 (15)	0.0318 (18)	-0.0023 (13)	0.0058 (14)	0.0015 (14)
C15	0.0371 (18)	0.0258 (17)	0.0343 (19)	-0.0076 (14)	-0.0072 (15)	-0.0027 (14)
C16	0.0359 (18)	0.0281 (17)	0.0361 (19)	-0.0002 (14)	-0.0031 (15)	0.0068 (15)
C17	0.0352 (17)	0.0246 (17)	0.0366 (18)	0.0001 (14)	0.0020 (14)	0.0064 (15)
C18	0.0372 (18)	0.0242 (17)	0.0367 (19)	0.0024 (14)	0.0072 (15)	0.0033 (14)
C19	0.0361 (18)	0.0227 (17)	0.043 (2)	-0.0001 (14)	0.0035 (15)	0.0013 (15)
C20	0.0364 (19)	0.0295 (17)	0.042 (2)	-0.0007 (15)	0.0066 (16)	0.0028 (15)
C21	0.041 (2)	0.0336 (19)	0.041 (2)	-0.0012 (16)	0.0039 (16)	0.0004 (16)
C22	0.053 (2)	0.037 (2)	0.070 (3)	-0.0073 (18)	0.025 (2)	0.0005 (19)
C23	0.064 (3)	0.063 (3)	0.081 (3)	-0.017 (2)	0.034 (2)	0.001 (2)
C24	0.0243 (16)	0.0194 (15)	0.0365 (19)	0.0005 (12)	0.0073 (14)	-0.0004 (13)
C25	0.0309 (18)	0.045 (2)	0.038 (2)	0.0039 (16)	0.0093 (15)	0.0022 (16)
C26	0.0257 (18)	0.051 (2)	0.049 (2)	0.0065 (15)	0.0046 (16)	0.0006 (18)
C27	0.0255 (17)	0.0257 (17)	0.046 (2)	0.0032 (13)	0.0144 (15)	-0.0016 (15)
C28	0.0343 (19)	0.046 (2)	0.034 (2)	0.0044 (16)	0.0071 (16)	-0.0030 (16)
C29	0.0246 (17)	0.043 (2)	0.041 (2)	0.0055 (15)	0.0044 (15)	-0.0006 (16)
C30	0.045 (2)	0.037 (2)	0.049 (2)	0.0030 (16)	0.0177 (18)	-0.0038 (17)
C31	0.043 (2)	0.041 (2)	0.058 (2)	0.0002 (17)	0.0284 (18)	-0.0068 (18)
C32	0.038 (2)	0.037 (2)	0.056 (2)	-0.0019 (16)	0.0214 (17)	-0.0056 (17)
C33	0.0360 (19)	0.0348 (19)	0.059 (2)	-0.0013 (16)	0.0176 (17)	-0.0069 (17)
C34	0.046 (2)	0.038 (2)	0.066 (3)	0.0018 (17)	0.0165 (19)	-0.0047 (19)
C35	0.045 (2)	0.040 (2)	0.086 (3)	0.0044 (17)	0.015 (2)	-0.013 (2)
C36	0.091 (3)	0.043 (3)	0.132 (4)	0.012 (2)	0.034 (3)	-0.014 (3)
<i>C i</i>	(()					

Geometric parameters (Å, °) 1.946 (2) Ni1—N1

C19—H19A

0.9900

Ni1—N1 ⁱ	1.946 (2)	C19—H19B	0.9900
Ni1—N2 ⁱ	1.951 (2)	C20—C21	1.525 (4)
Ni1—N2	1.951 (2)	C20—H20A	0.9900
N1—C2	1.387 (3)	С20—Н20В	0.9900
N1—C5	1.391 (3)	C21—C22	1.508 (4)
N2—C10	1.391 (3)	C21—H21A	0.9900
N2—C7	1.392 (3)	C21—H21B	0.9900
O1—C14	1.371 (3)	C22—C23	1.526 (4)
O1—C17	1.438 (3)	C22—H22A	0.9900
O2—C27	1.376 (3)	С22—Н22В	0.9900
O2—C30	1.430 (4)	C23—H23A	0.9800
C1C10 ⁱ	1.378 (4)	С23—Н23В	0.9800
C1—C2	1.388 (4)	С23—Н23С	0.9800
C1—C11	1.503 (4)	C24—C29	1.378 (4)
C2—C3	1.428 (4)	C24—C25	1.389 (4)
C3—C4	1.337 (4)	C25—C26	1.384 (4)
С3—Н3	0.9500	С25—Н25	0.9500
C4—C5	1.428 (4)	C26—C27	1.383 (4)
C4—H4	0.9500	C26—H26	0.9500
C5—C6	1.380 (4)	C27—C28	1.381 (4)
C6—C7	1.382 (4)	C28—C29	1.394 (4)
C6—C24	1.502 (4)	C28—H28	0.9500
С7—С8	1.422 (4)	С29—Н29	0.9500
C8—C9	1.343 (4)	C30—C31	1.520 (4)
С8—Н8	0.9500	C30—H30A	0.9900
C9—C10	1.437 (4)	С30—Н30В	0.9900
С9—Н9	0.9500	C31—C32	1.525 (4)
C10—C1 ⁱ	1.378 (4)	C31—H31A	0.9900
C11—C12	1.378 (4)	C31—H31B	0.9900
C11—C16	1.387 (4)	C32—C33	1.518 (4)
C12—C13	1.388 (4)	C32—H32A	0.9900
C12—H12	0.9500	С32—Н32В	0.9900
C13—C14	1.380 (4)	C33—C34	1.522 (4)
C13—H13	0.9500	С33—Н33А	0.9900
C14—C15	1.387 (4)	С33—Н33В	0.9900
C15—C16	1.377 (4)	C34—C35	1.510 (4)
C15—H15	0.9500	C34—H34A	0.9900
С16—Н16	0.9500	С34—Н34В	0.9900
C17—C18	1.502 (4)	C35—C36	1.516 (5)
С17—Н17А	0.9900	С35—Н35А	0.9900
С17—Н17В	0.9900	С35—Н35В	0.9900
C18—C19	1.521 (4)	С36—Н36А	0.9800
C18—H18A	0.9900	С36—Н36В	0.9800
C18—H18B	0.9900	С36—Н36С	0.9800
C19—C20	1.516 (4)		
N1—Ni1—N1 ¹	179.996 (1)	C21—C20—H20A	109.1
$N1$ — $Ni1$ — $N2^{i}$	89.88 (9)	C19—C20—H20B	109.1

N1 ⁱ —Ni1—N2 ⁱ	90.13 (9)	C21—C20—H20B	109.1
N1—Ni1—N2	90.13 (9)	H20A—C20—H20B	107.9
N1 ⁱ —Ni1—N2	89.87 (9)	C22—C21—C20	115.0 (3)
N2 ⁱ —Ni1—N2	180.0	C22—C21—H21A	108.5
C2—N1—C5	103.8 (2)	C20—C21—H21A	108.5
C2—N1—Ni1	128.28 (19)	C22—C21—H21B	108.5
C5—N1—Ni1	127.87 (18)	C20-C21-H21B	108.5
C10—N2—C7	104.0 (2)	H21A—C21—H21B	107.5
C10—N2—Ni1	128.07 (18)	C21—C22—C23	112.9 (3)
C7—N2—Ni1	127.92 (18)	C21—C22—H22A	109.0
C14—O1—C17	117.2 (2)	C23—C22—H22A	109.0
C27—O2—C30	116.9 (2)	C21—C22—H22B	109.0
C10 ⁱ —C1—C2	122.2 (2)	C23—C22—H22B	109.0
C10 ⁱ —C1—C11	119.2 (3)	H22A—C22—H22B	107.8
C2—C1—C11	118.6 (2)	С22—С23—Н23А	109.5
C1—C2—N1	125.6 (2)	С22—С23—Н23В	109.5
C1—C2—C3	123.3 (3)	H23A—C23—H23B	109.5
N1—C2—C3	110.9 (2)	С22—С23—Н23С	109.5
C4—C3—C2	107.2 (3)	H23A—C23—H23C	109.5
С4—С3—Н3	126.4	H23B—C23—H23C	109.5
С2—С3—Н3	126.4	C29—C24—C25	117.6 (3)
C3—C4—C5	107.4 (3)	C29—C24—C6	119.8 (3)
C3—C4—H4	126.3	C25—C24—C6	122.6 (3)
C5—C4—H4	126.3	C24—C25—C26	121.2 (3)
C6—C5—N1	125.8 (2)	C24—C25—H25	119.4
C6—C5—C4	123.5 (3)	C26—C25—H25	119.4
N1—C5—C4	110.6 (2)	C27—C26—C25	120.2 (3)
C5—C6—C7	122.5 (3)	С27—С26—Н26	119.9
C5—C6—C24	118.7 (3)	C25—C26—H26	119.9
C7—C6—C24	118.7 (3)	O2—C27—C28	124.6 (3)
C6—C7—N2	125.5 (3)	O2—C27—C26	115.9 (3)
C6—C7—C8	123.7 (3)	C28—C27—C26	119.5 (3)
N2—C7—C8	110.8 (2)	C27—C28—C29	119.3 (3)
C9—C8—C7	107.6 (3)	С27—С28—Н28	120.4
С9—С8—Н8	126.2	C29—C28—H28	120.4
С7—С8—Н8	126.2	C24—C29—C28	122.1 (3)
C8—C9—C10	106.9 (3)	С24—С29—Н29	119.0
С8—С9—Н9	126.5	С28—С29—Н29	119.0
С10—С9—Н9	126.5	O2—C30—C31	108.7 (3)
C1 ⁱ —C10—N2	125.8 (3)	O2—C30—H30A	109.9
C1 ⁱ —C10—C9	123.6 (3)	C31—C30—H30A	109.9
N2—C10—C9	110.6 (2)	O2—C30—H30B	109.9
C12—C11—C16	117.3 (3)	С31—С30—Н30В	109.9
C12—C11—C1	119.9 (3)	H30A—C30—H30B	108.3
C16—C11—C1	122.7 (3)	C30—C31—C32	113.1 (3)
C11—C12—C13	122.5 (3)	C30—C31—H31A	109.0
C11—C12—H12	118.8	С32—С31—Н31А	109.0

C13—C12—H12	118.8	C30—C31—H31B	109.0
C14—C13—C12	119.3 (3)	С32—С31—Н31В	109.0
C14—C13—H13	120.4	H31A—C31—H31B	107.8
C12—C13—H13	120.4	C33—C32—C31	113.9 (3)
O1-C14-C13	124.9 (3)	C33—C32—H32A	108.8
O1-C14-C15	116.1 (3)	C31—C32—H32A	108.8
C13—C14—C15	119.1 (3)	С33—С32—Н32В	108.8
C16-C15-C14	120.7 (3)	C31—C32—H32B	108.8
C16—C15—H15	119.6	H32A—C32—H32B	107.7
C14—C15—H15	119.6	C32—C33—C34	112.7 (3)
C15-C16-C11	121.1 (3)	С32—С33—Н33А	109.1
C15—C16—H16	119.4	С34—С33—Н33А	109.1
C11—C16—H16	119.4	С32—С33—Н33В	109.1
O1—C17—C18	108.4 (2)	С34—С33—Н33В	109.1
O1—C17—H17A	110.0	H33A—C33—H33B	107.8
C18—C17—H17A	110.0	C35—C34—C33	114.3 (3)
O1—C17—H17B	110.0	C35—C34—H34A	108.7
C18—C17—H17B	110.0	C33—C34—H34A	108.7
H17A—C17—H17B	108.4	C35—C34—H34B	108.7
C17—C18—C19	112.5 (2)	C33—C34—H34B	108.7
C17-C18-H18A	109.1	H34A—C34—H34B	107.6
C19-C18-H18A	109.1	C34—C35—C36	112.3 (3)
C17—C18—H18B	109.1	С34—С35—Н35А	109.1
C19-C18-H18B	109.1	С36—С35—Н35А	109.1
H18A—C18—H18B	107.8	С34—С35—Н35В	109.1
C20-C19-C18	115.0 (2)	С36—С35—Н35В	109.1
C20-C19-H19A	108.5	H35A—C35—H35B	107.9
C18—C19—H19A	108.5	С35—С36—Н36А	109.5
C20-C19-H19B	108.5	С35—С36—Н36В	109.5
C18—C19—H19B	108.5	H36A—C36—H36B	109.5
H19A—C19—H19B	107.5	С35—С36—Н36С	109.5
C19—C20—C21	112.3 (2)	H36A—C36—H36C	109.5
C19—C20—H20A	109.1	H36B—C36—H36C	109.5
Symmetry codes: (i) $-x+2$, $-y$, $-z$.			

